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(Received 17 June 1999 and in revised form 27 November 2000)

This paper deals with the stability of suspensions modelled as dusty gases for non-
uniform profiles of mass fraction of particles. It is known that a stationary uniform
fluidized bed may be unstable to small disturbances which grow until a secondary
instability develops forming bubbles that rise through the bed. Interactions between
particles are difficult to model and this makes it necessary to close the model with
some assumptions. However, in dilute fluidized beds which are characterized by a
low volume fraction of particles, interactions between particles are negligible and
this motivates the study of instabilities of suspensions by means of the dusty gas
equations, avoiding the problem of particular closures.

We show in this work that suspensions blown to regions of higher concentration are
unstable to two-dimensional disturbances. An equation which governs this instability
is obtained. A physical mechanism is proposed to explain this instability and it is
related to the Rayleigh–Taylor one in the limit of long characteristic lengthscales
associated with the concentration profile. Finally, the evolution of this instability is
followed using a fully nonlinear numerical code showing the formation of streamers
and clusters of particles.

1. Introduction
We are concerned in this paper with investigating the stability of suspensions of

particles by means of dusty gas equations. The motivation is partly the behaviour of
dilute flow encountered either in fast fluidized beds or at the free surface of a bubbling
fluidized bed, and partly the desire to study the phenomenon of bed instability in
a regime in which the modelling of the two-phase flow can be simplified to a great
extent.

When the gas velocity in a fluidized bed is close to the minimum fluidization
velocity, in which the drag of particle clusters equilibrates their weight, the bed
bubbles vigorously. When the velocity is increased further, the aerodynamic drag of
even single particles becomes larger than their weight, and the bed enters the fast
fluidization regime. The particles are blown out of the top of the bed, and have to be
recirculated externally.

These so-called fast or circulating fluidized beds are very attractive in applications
in which an intimate contact of gas and solids is important. They are used in catalytic
processes, and in gas–solid reactions like calcination and combustion. In general,
in spite of their industrial importance, much of the knowledge of fast fluidized
beds is empirical, and theoretical information is scarce. They are known to be very
inhomogeneous, typically characterized by a progression from concentrated to dilute
from bottom to top, with a concomitant radial segregation into a dilute core and
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a more concentrated annulus toward the top (Brereton & Grace 1993; Dasgupta,
Jackson & Sundaresan 1994). The spatial distribution of solids is characterized by
dense strands or clusters (Yerushalmi & Cankurt 1978), which have been observed to
be paraboloidal in shape, opening upwards (Horio & Kuroki 1994).

Three basic levels of modelling have commonly been applied to fluidized beds,
the first two adopting the concept of interpenetrating (continuum) fluids. The third,
most comprehensive, level is to endow each of the two phases with its own stress
tensor, and to account explicitly for volumetric coupling (i.e. the effect of fraction of
solids on the densities of both phases) along with interphase friction (Fanucci, Ness
& Yen 1979; Needham & Merkin 1983; Hernández & Jiménez 1991). The stresses
and friction terms pose troublesome questions for closure – whether by Reynolds-
type averaging analogous to turbulence theory (Buyevich 1971; Drew 1983; Jackson
1996) or by phenomenological empiricism. Such two-fluid models have successfully
predicted some known instabilities of fluidized beds (Homsy, El-Kaissy & Didwania
1980; Hernández 1990; Anderson, Sundaresan & Jackson 1995; Glasser, Kevrekidis
& Sundaresan 1996). The key question is: which elements of the macroscopic closure
are necessary to capture which instabilities? Volumetric coupling in the model leads
to the primary instability by which a uniform concentration profile segregates into
alternating horizontal layers of higher and lower density (Jackson 1963). Further work
by Needham (1986), Harris & Crighton (1994) and Harris (1996), provided valuable
approaches to the one-dimensional nonlinear behaviour of voidage disturbances of
fluidized beds: it is believed that a secondary, two-dimensional ‘overturning’ instability
grows out of these layers to form the bubbles that rise through the bed. The import-
ance of the relative timescales of the primary versus secondary instabilities emerges
from the extensive analysis of Anderson et al. (1995) for gas- and water-fluidized
beds. Bifurcation theory reveals a universal qualitative structure independent of the
particular closure approximations (Göz 1995; Glasser, Kevrekidis & Sundaresan
1997; Glasser, Sundaresan & Kevrekidis 1998).

The dusty gas equations (§ 2) discard volumetric coupling between the two inter-
penetrating phases (assuming suitably dilute solids), but retain the interphase drag.
Correspondingly, the primary instability is lost from the model (§ 3.1), but suscepti-
bility to the secondary instability once a horizontal stratification has formed remains.
(Gradients can thus have a significant effect even under conditions where the primary
instability is not important, such as low volume fraction with mass fraction of order
unity.) The same is true of the even simpler one-fluid model (Batchelor & Nitsche
1991; Batchelor 1993), which applies when the slip velocity of the perturbations be-
tween the gas and the particles is small (mass fraction of solids much greater than
unity). The motivation of using the dusty gas equations here is that they could apply
to the dilute core region near the top of fast fluidized beds, where the one-fluid
assumptions are not valid.

As well as linear stability theory (§ 3.1) applied to a sinusoidal variation (§ 3.2) and
the limiting case of a step change (§ 3.3), this paper tracks the nonlinear evolution
numerically (§ 4), through to the evolution of strands (mass fractions of order 10) and
paraboloidal clusters (mass fractions of order unity). To our knowledge, this is the
first time that the whole transition process has been computed.

2. Equations for dusty gases
Equations of dusty gases have been analysed extensively in the literature. We use

the two-fluid model proposed by Saffman (1962) and used by Ishii & Matsuhisa
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(1983) and Dasgupta et al. (1994). In these equations the phases are represented
as interpenetrating fluids, each of which occupies the whole two-dimensional space.
Since the volume fraction of particles is small, the interactions between particles
and the volumetric coupling between phases can be neglected in the conservation
equations. Each phase has its own continuity and momentum equation, and the only
interaction between the phases is in the form of a mutual drag. The gas is assumed
to be incompressible with a density ρg , and the density of the particles ρp is taken to
be much larger than that of the gas.

In most practical cases the size of the particles is not uniform, in which case several
‘fluids’ may be needed to represent each size range. In this paper, the problem is
simplified by considering identical particles, large enough to neglect their Brownian
motion, and close enough to spherical for lift forces to be negligible.

We will further assume that the Reynolds number based on the particle diameter
and on the particle–gas slip velocity is small, so that the drag force on an isolated
particle obeys Stokes’ law. If we assume that the slip velocity is of the order of the
terminal velocity of an isolated particle Ut = ρpgd

2/(18 µg) under the action of gravity
(g), its Reynolds number can be defined as

Ret =
ρgUtd

µg
, (2.1)

where d is the particle diameter, and µg is the gas viscosity. The requirement of Ret
of order unity limits our analysis to sufficiently fine particles.

We will also suppose that the Reynolds number of the gas flow is large enough
to consider the gas inviscid except for its interaction with the particles. If we assume
that the gas velocity is of the order of the terminal velocity and the characteristic
length of the gas flow is Lν we can define a Reynolds number of the gas flow as

Re =
ρgUtLν

µg
. (2.2)

The requirement that Re be much greater than unity limits the validity of the model
to sufficiently coarse particles.

For the present study we define the mass fraction of particles β as the volume
fraction of particles multiplied by ρp/ρg . We consider that β is of order unity and
we normalize the equations with the terminal velocity Ut, with the relaxation time
τν = Ut/g, and the viscous length derived from them Lν = τ2

νg. The dimensionless
equations of conservation of mass and momentum for the particles and the gas are

∂β

∂t̃
+ ∇ · (βṽp) = 0, (2.3)

∂ṽp

∂t̃
+ ṽp · ∇ṽp = −i + ṽg − ṽp, (2.4)

∇ · ṽg = 0, (2.5)

∂ṽg

∂t̃
+ ṽg · ∇ṽg = −∇P̃g + β(ṽp − ṽg), (2.6)

where ṽp, ṽg are the macroscopic dimensionless velocities of the particles and gas

respectively, P̃g is the gas pressure including the hydrostatic term made dimensionless
with ρgU

2
t , and i is the unit vector along the x-axis, opposite to the direction of

gravity.
In order to see the range of particles that we can analyse with equations (2.3)–(2.6),
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d (µm) Ut (cm s−1) Ret Lν (cm) τν (ms) Re

70 26 1.2 0.66 26 114
100 53 3.6 2.8 53 1002
150 121 12.1 15 123 12100

Table 1. Parameters of the range of particles analysed.

we list in table 1 the terminal velocity and the viscous length for different diameters
of particles with ρp = 1.78 g cm−3. To ensure that the drag force obeys the Stokes law,
Ret must be of order unity and, hence, particle diameters must be less than 150µm.
Also, to neglect viscous stresses of the gas, Re must be much greater than unity which
limits the analysis to particle diameters greater than 70 µm.

We will focus our work in the behaviour of non-uniform suspensions of particles
between 70 and 150µm with associated characteristic lengths greater than 1 cm
fluidized by air.

3. Linear stability analysis of dusty gases
We will consider a vertical distribution of particles under the action of gravity

suspended by an upward gas flow. We will analyse the stability of the following
steady solutions: a sinusoidal mass fraction distribution and a step-like distribution
of particles. The step-like distribution is analysed to obtain an analytical bound of
the growth rate of the instability with the most simple non-uniform distribution.

In § 3.2 and § 3.3 we will see how non-uniform suspensions are unstable to two-
dimensional disturbances with a characteristic timescale t = O(τν) when they are
blown to regions of higher concentration. We will explain that the physical mechanism
of this instability induced by concentration gradients in the long wave limit is
equivalent to the Rayleigh–Taylor instability.

3.1. The disturbance equations of a non-uniform suspension

We consider a steady solution of dusty gas equations (2.3)–(2.6) in which the initial
mass fraction distribution varies with height. The only non-uniform steady solution
with an arbitrary distribution of particles is a suspension at rest in which the weight
of particles is equilibrated by the drag of a gas blowing upwards:

β = γB(x̃), ṽp = 0, ṽg = i, ∇P̃0 = −γB(x̃)i, (3.1)

where P0 is the gas pressure. We add an infinitesimal transversal perturbation,

β = γB(x̃) + γβ̃(x̃) exp (iκyỹ + µ̃t), ṽp = (up, vp) exp (iκyỹ + µ̃t), (3.2)

ṽg = i + (ug, vg) exp (iκyỹ + µ̃t), P̃g = P̃0 + P (x) exp (iκyỹ + µ̃t). (3.3)

Here, κy is real and µ complex. Linearizing equations (2.3)–(2.6) around the steady
state gives

DBup + µβ̃ + B(Dup + iκyvp) = 0, (3.4)

µup = ug − up, (3.5)

µvp = vg − vp, (3.6)

Dug + iκyvg = 0, (3.7)
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µug + Dug = −DP + γB(up − ug)− γβ̃, (3.8)

µvg + Dvg = −iκyP + γB(vp − vg), (3.9)

where D stands for differentiation with respect to x̃. Since volumetric coupling between
phases is neglected, the gas is considered incompressible (3.7). It is easy to prove by
combining equations (3.5)–(3.7) that the particle phase is also linearly incompressible,

Dup + iκyvp = 0. (3.10)

If now we assume B(x̃) = O(1) with variations much less than unity and make the
Boussinesq approximation that density variations are significant only through their
influence on the gravitational force, gas pressure P can be eliminated with equations
(3.8)–(3.9) to obtain an equation for the vorticity of the gas:

(D + µ)ωg = γ(ωp − ωg)− iκyγβ̃, (3.11)

where ωg = Dvg − iκyug, and ωp = Dvp − iκyup. The left-hand-side terms represent

the convection and local variation of the vorticity of the gas, while the term iκyγβ̃ on
the right-hand-side represents the creation of vorticity in the gas by the drag between
phases. An equation for the vorticity of the particles is obtained using equations
(3.5)–(3.6):

µωp = ωg − ωp. (3.12)

The variables β, ug , vg , vp can be eliminated with equations (3.4) and (3.10)–(3.12) to
give

µ{(D + µ)(µ+ 1) + γµ}(D2 − κ2
y)up = −γκ2

y DB up. (3.13)

Uniform concentration profiles (DB = 0) are neutrally stable. For bounded eigen-
functions up(x̃) in an infinite domain, it is easy to prove that if∫ +∞

−∞
DB u2

p dx > 0, (3.14)

then there exists at least one eigenvalue with real part greater than zero. As a particular
case, the condition (3.14) is fulfilled for increasing distributions with DB(x̃) > 0 in
the whole fluid domain. Hence, particles blown up to regions of higher concentration
are unstable to two-dimensional disturbances.

When considering disturbances of wavelengths much greater than the viscous
length, this instability is equivalent to the Rayleigh–Taylor instability. In the long
wave limit (κy � 1), particles follow closely the variations of the gas velocity, and the
mixture can be considered as one phase with a new density 1 + γ. Considering that
D = O(κy) and DB = O(κy) (which is equivalent to rescaling the problem with κy)

we can look for eigenvalues O(κ
1/2
y ) and equation (3.13) gives

µ2(1 + γ)(D2 − κ2
y)up = −γκ2

y DB up, (3.15)

which is the Rayleigh–Taylor equation (Chandrasekhar 1981) for the stability of a
stratified fluid with density 1 + γ. However, for values of κy = O(1) the full equation
(3.13) must be retained.

3.2. Sinusoidal mass fraction distribution

The mass fraction of particles is written as

B(x̃) = 1 + ∆ sin (κxx̃), (3.16)
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in which the constant ∆ is positive. We can look for a Fourier expansion of the form

up(x̃) =

∞∑
n=−∞

ûn exp (inκxx̃), (3.17)

where ûn is the complex amplitude of the harmonic n. Substituting the Fourier
expansion for up in (3.13) we obtain

∞∑
n=−∞

Gnûn exp (inκxx̃) =

∞∑
n=−∞

ûn(exp (i(n+ 1)κxx̃) + exp (i(n− 1)κxx̃)) (3.18)

with

Gn =
2µ(n2 + Λ2)

γ∆κxΛ2
{(inκx + µ)(µ+ 1) + γµ}, (3.19)

and

Λ =
κy

κx
. (3.20)

Projecting along sines and cosines we obtain

Gnûn = ûn+1 + ûn−1, n = −∞ . . .∞, (3.21)

which is a homogeneous system of linear equations. Setting the determinant of the
system to zero, we obtain the eigenvalues of stability. The numerical treatment of the
problem requires the truncation of the expansion (3.17) with a number of harmonics
great enough to give a negligible error.

The eigenvalues of stability depend on the following parameters: ∆, γ, κx, Λ. To
study the dependence of the stability on these parameters we plot in figure 1 µ versus
Λ for two different values of mass fraction γ. In figure 1(a) γ = 1 and different values
of κx are plotted to show the influence of the characteristic length of the concentration
gradient Lx = 2πLν/κx. We note that there is no mechanism to stabilize the short
wavelength (κx � 1) but the growth rate of the instability is bounded. Also, there is a
transversal wavelength Ly = O(Lx) for which the instability has a maximum growth
rate. The behaviour in figure 1(b) for mass fraction γ = 10 is similar than for γ = 1
but the bound of the growth rate is reached for small values of Lx. It is important
to note that while in the Rayleigh–Taylor instability predicted by equation (3.15)
the most unstable transversal disturbance κy corresponds to the shortest wavelength
present, the most unstable transversal disturbance predicted by equation (3.13) is
achieved for a finite value of κy = O(κx).

For particles of 70µm and mass fractions of order unity, this instability will be
significant for concentration gradients with a characteristic wavelength Lx ≈ 4 cm and
the maximum growth rate will be achieved for transversal wavelength Ly ≈ 2 cm with
a characteristic evolution time t ≈ 0.2 s. For particles of 150 µm and mass fractions
of order unity, this instability will be significant for concentration gradients with a
characteristic wavelength Lx ≈ 90 cm and the maximum growth rate will be achieved
for transversal wavelength Ly ≈ 55 cm with a characteristic evolution time t ≈ 0.8 s.

3.3. Step-like mass fraction distribution

As we have seen, the maximum growth rate of the instability of a concentration
gradient is bounded. In this section we will obtain an analytical bound for the
growth rate of the instability. The stability of disturbances is governed by (3.13). This
equation is especially easy to analyse if the undisturbed mass fraction distribution is
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Figure 1. Growth rate of the overturning instability versus Λ: curves for different values of κx
with (a) γ = 1 and (b) γ = 10; ∆ = 0.3.

particularized to a step,

B(x̃) =

{
1, x̃ < 0
1 + ∆, x̃ > 0,

(3.22)

where ∆ is constant. We can take the Fourier transform in (3.13)

ûp(κx) =
1

2π

∫ +∞

−∞
up(x̃) exp (−iκxx̃) dx̃ (3.23)

to obtain

µ{(iκx + µ)(µ+ 1) + γµ}(κ2
x + κ2

y)ûp =
γ∆κ2

y

2π

∫ +∞

−∞
ûp(κx) dκx. (3.24)

The solution of the integral equation (3.24) is

ûp(κx) =
C

µ{(iκx + µ)(µ+ 1) + γµ}(κ2
x + κ2

y)
, (3.25)

where C is a complex constant. The characteristic polynomial of instability is obtained
by looking for a non-trivial solution of (3.24), which gives

µ(µ2 + (1 + γ + κy)µ+ κy) =
γκy∆

2
. (3.26)

In the Rayleigh–Taylor limit (κy � 1), the characteristic roots are

µ1,2 = ±
(

κyγ∆

2(1 + γ)

)1/2

, (3.27)

µ3 = −1− γ. (3.28)

The necessary condition for these long waves to be unstable is simply ∆ > 0. Note
that µ1,2 are the eigenvalues given by the Rayleigh–Taylor equation (3.15).

In the short-wavelength limit (κy � 1), the roots of (3.26) result in a bounded
growth rate

µ1,2 = 1
2
{−1± (1 + 2γ∆)1/2}, (3.29)

µ3 = −κy. (3.30)

The condition for these short waves to be unstable is also that ∆ > 0, in which case
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Figure 2. Physical mechanism of the overturning instability: (a) loss of pressure in the cloud of
particles; (b) movement of gas; (c) drag and weight forces exerted over particles.

µ1 > 0. It is important to note that while the growth rate of the Rayleigh–Taylor
instability described by equation (3.15) is unbounded for high wavenumbers, the
growth rate of the instability of the concentration gradients predicted by the dusty
gas equations (3.13) is bounded.

To explain the physical mechanism of this instability, we consider in figure 2 a step
distribution of particles. This figure has been divided into a sequence of three parts:
(a), (b) and (c). In each, particles are found in the upper part of the figure and the gas
flow blows from bottom to top. In figure 2(a) particles are at rest with their weight
balanced by the drag force exerted by the gas. We initially corrugate the interface that
separates particles and gas. Since the pressure drop is proportional to the distance of
penetration into the cloud of particles and to the difference between gas and particle
velocities, gas pressure at point Q1 is lower than at Q2. Hence, besides the vertical
gradient of the gas pressure imposed to suspend the particles, a horizontal gradient
appears that creates a movement of gas from Q2 to Q1 (figure 2b). This movement
of gas exerts a drag force over the particle which has a horizontal component. The
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horizontal component of the drag cannot be balanced by their weight and particles
begin to move (figure 2c). This movement of particles makes the corrugation more
pronounced.

4. Nonlinear evolution of the disturbances
We study the nonlinear evolution of the disturbances by means of a fully spectral

numerical simulation of the time-evolving initial value problem defined by the dusty
gas equations (2.3)–(2.6). Boundary conditions are considered periodic and the spatial
discretization uses Fourier expansions. The convolution sums of the nonlinear terms
are calculated via the inverse discrete Fourier transform and the aliasing error is
removed in order to have a true spectral Galerkin method. Time integration is
accomplished by an explicit fourth-order Runge–Kutta scheme. Further details of the
numerical code can be found in Hernández (1990).

All lengths are normalized with the viscous length Lν so that the box lengths Lx
and Ly are given in terms of a dimensionless wavenumber κx = 2πLν/Lx and the
aspect ratio Λ = Lx/Ly . The flow repeats periodically outside the numerical box, both
laterally (ỹ) and longitudinally (x̃).

Since the uniform state is stable, the initial condition is taken non-uniform. As
an initial condition we take the sinusoidal distribution of particles B(x̃) given in
(3.16) and analysed in § 3.2. The particles are considered to be at rest, and their mass
fraction is

β(x̃, ỹ) = γB(x̃)(1 + εy cos (κyỹ)), (4.1)

where εy is the amplitude of the transversal perturbation. The mass flux of the mixture
is kept constant in time by a pressure field,

P̃g(x̃, ỹ, t̃) = P̃0(x) + P̃ (x, y, t), (4.2)

where P̃0 is chosen using (3.1) and P̃ (x̃, ỹ, t̃) is periodic in x̃ and ỹ.
In order to cover the range of validity of the dusty gas equations six different

numerical simulations are computed: three (figures 3 and 4) for a value of mass
fraction γ = 1 and the other three (figures 5 and 6) for γ = 10. Since there is no effective
viscous stress in the dusty gas equations (2.3)–(2.6), there is no physical mechanism
to describe solutions when high gradients are present. Hence, the simulations are
aborted when high gradients are formed with the loss of spectral accuracy.

In all simulations the aspect ratio of the numerical box Λ is determined by the
most unstable transversal perturbation for the initial condition, obtained by the
linear analysis given in § 3.2 (see figure 1). The initial condition for all of them is
a steady solution with εy = 0, but the transversal perturbations are subjected to the
concentration gradient instability. As was shown in § 3.3, those gradients in which the
gas blows towards regions of higher concentration tend to corrugate.

The first simulation corresponds to a mass fraction of particles γ = 1 with κx = 1
and Λ = 1.7. Figure 3 shows plots of the mass fraction of particles β at successively
increasing values of the dimensionless time t̃. A grey-scale has been used, where white
stands for the lowest value of β and black for the highest value. Initially particles
are at rest suspended by the gas flow. Once the concentration gradient is perturbed
with a transversal disturbance, the gas pressure disturbance gives a two-dimensional
disturbance to the gas which drags particles laterally and longitudinally. Plots have
been shifted in the vertical direction so that entire clusters appear. The first three
frames show how the fronts corrugate transversally: in the second frame t̃ = 21
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Figure 3. Grey-scale plots displaying the evolution of the mass fraction of particles β over the time
of the simulation, showing the formation of paraboloids with γ = 1 and Λ = 1.7. Initial conditions
κx = 1, ∆ = 0.3 and εy = −0.01. Resolution 48 × 48. (a) Initial condition t̃ = 0; (b) t̃ = 21;
(c) t̃ = 30; (d) t̃ = 36; (e) t̃ = 39; (f) t̃ = 42.

(figure 3b) the lower edge of the gradient corrugates, with this distortion progressing
in the third frame t̃ = 30 (figure 3c). It can be seen in figure 3(e) how the distortion
progresses by breaking the front, giving rise to progressively more isolated zones of
high particle concentration, which in turn originate a small paraboloid which can be
seen in the last frame (figure 3f). These paraboloids are, in fact, particle clusters such
as those reported by Glasser et al. (1998) to arise from the secondary instability of
fluidized beds.

In order to analyse the effect of the characteristic length of the concentration
gradient, we represent in figure 4 at a late time three different simulations for γ = 1
with initial concentration profiles with κx = 10, 1, 0.1. Taking the advantage of left–
right symmetry of all figures, the velocity vectors of the gas are superposed on the left
of the grey-scale plots, and on the right the velocity vectors of particles are shown.
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(a) (b) (c) (d )

(e) ( f )

0.5 1.9

Figure 4. Grey-scale plots of mass fraction of particles β and velocity vectors of gas (left) and
particles (right) displaying the final structures for different values of κx with γ = 1. Initial conditions
∆ = 0.3 and εy = −0.01. Resolution 48× 48. Velocity vectors of gas are plotted with the same scale.
Velocity vectors of particles have different scale factors referred to the gas: (b) 20; (d) 6 and (f) 2.
(a, b) Simulation with κx = 10 and Λ = 1.7 at t̃ = 39; (c, d) simulation with κx = 1 and Λ = 1.7 at
t̃ = 42; (e, f) simulation with κx = 0.1 and Λ = 2.2 at t̃ = 68.

The frame of reference from which velocity vectors are seen is the laboratory frame.
Velocity vectors of the gas are plotted with the same scale. Velocity vectors of particles
have different scale factors referred to the gas: (b) 20; (d) 6; (f) 2. While for long
characteristic lengths Lx � Lν (figure 4e) falling streamers of particles are formed, for
Lx = O(Lν) falling and rising paraboloids are observed. Recirculation cells of particles
are observed in all simulations (figure 4b, d, f) forming rising and falling paraboloids.
For the velocity of the gas, recirculation is observed only in figure 4(e).

The following figures are for suspensions with a characteristic mass fraction γ = 10.
In figure 5 the evolution of the mass fraction of particles β is depicted at successively
increasing values of dimensionless time t̃. In this simulation κx = 1 and Λ = 3. The
last three frames (̃t = 10, 11, 12) clearly depict the formation of falling streamers, with
particles accumulating in the middle of the cell and with the formation of zones of
lower particle concentration.

To study the behaviour of a suspension with varying characteristic length of the
concentration gradients, three different simulations (κx = 10, 1, 0.1) are shown in
figure 6 with γ = 10. Velocity vectors of gas and particles are plotted with the same
scale factors as figure 4. For small characteristic lengths (Lx � Lν), falling and rising
paraboloids are formed (figure 6a) and for long lengths, falling streamers are observed.
Since the mass fraction is greater than in figure 4, the gas velocity is more perturbed
by the presence of particles as is observed in figure 6(e). The particle velocity vectors
show that the particles accumulate in the middle of the cell, giving rise to the falling
streamers. Again, recirculation of gas is observed in figure 6(e).

It is noteworthy that the paraboloid-shaped structures depicted for the mass fraction
of particles in figure 4(a) and figure 4(c) clearly resemble those experimentally observed
by Horio & Kuroki (1994) for a dilute transport condition.
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Figure 5. Grey-scale plots displaying the evolution of mass fraction of particles β over the time
of simulation, showing the formation of falling strands with γ = 10 and Λ = 3. Initial conditions
κx = 1, ∆ = 0.3 and εy = −0.01. Resolution 48× 48. (a) Initial condition t̃ = 0; (b) t̃ = 6; (c) t̃ = 8;
(d) t̃ = 10; (e) t̃ = 11; (f) t̃ = 12.

5. Conclusions
In this paper we have studied the stability of concentration gradients in dusty

gases. It has been demonstrated by a linear analysis of stability that when fronts
of characteristic length Lx are blown towards regions of higher concentration of
particles, these fronts are unstable to two-dimensional disturbances of characteristic
length Ly and the maximum growth rate is achieved at Ly = O(Lx). This instability
has been related to the Rayleigh–Taylor one and they are the same in the limit of the
viscous length of an isolated particle Lν � Lx. For these long waves the relaxation
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7 19

Figure 6. Grey-scale plots of mass fraction of particles β and velocity vectors of gas (left) and
particles (right) displaying the final structures for different values of κx with γ = 10. Initial conditions
∆ = 0.3 and εy = −0.01. Resolution 48× 48. Velocity vectors of gas are plotted with the same scale.
Velocity vectors of particles have different scale factors referred to the gas: (b) 20; (d) 6 and (f) 2.
(a, b) Simulation with κx = 10 and Λ = 1.7 at t̃ = 6; (c, d) simulation with κx = 1 and Λ = 3 at
t̃ = 12; (e, f) simulation with κx = 0.1 and Λ = 3 at t̃ = 30.

time of an isolated particle is much smaller than the characteristic time of the flow,
the particles follow closely the variations of the gas velocity, and the mixture can be
considered as one phase with a new density profile determined by the presence of
particles. On the other hand, when Lν = O(Lx), the dusty gas cannot be considered as
one phase because particles do not follow closely the variations of gas and hence the
growth rate of disturbances in this limit is different from the Rayleigh–Taylor ones.
It has been demonstrated that the growth rate of this instability is bounded by the
relaxation time of an isolated particle.

It has been shown by a fully numerical simulation how this instability corrugates
fronts, forming falling streamers and paraboloids depending on the characteristic
length of the concentration gradient and the mass fraction of the suspension.
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Göz, M. F. 1995 Transverse instability of plane wavetrains in gas-fluidized beds. J. Fluid Mech. 303,
55–81.

Harris, S. E. 1996 The growth of periodic waves in gas-fluidized beds. J. Fluid Mech. 325, 261–282.

Harris, S. E. & Crighton, D. G. 1994 Solitons, solitary waves, and voidage disturbances in
gas–fluidized beds. J. Fluid Mech. 266, 243–276.

Hernández, J. A. 1990 Analytical and numerical study of instabilities of two phase flows (in
Spanish). PhD Thesis, School of Aeronautics. Madrid.
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